TA-Numba: Technical Analysis Library with Numba Acceleration

TA-Numba is a Python library for financial technical analysis that provides dependency-free installation and high-performance computation through Numba JIT compilation. It offers both bulk processing for historical analysis and real-time streaming for live trading applications.

Below is the embedded research paper which details the architecture, implementation, and benchmark results of ta-numba, demonstrating its effectiveness in a quantitative research environment.

📊 Performance Comparison

Based on comprehensive benchmarks with 100,000 data points across multiple technical analysis libraries:

Aspect TA-Lib ta-numba ta pandas cython
Installation C compiler required pip install only pip install only pip install only Compilation required
Average Performance Fastest (baseline) 4.3x slower 857x slower 94x slower 2.5x slower
Best Cases Fastest overall MACD: 3.8x faster All cases slower All cases slower Mixed results
Worst Cases WMA, ADX fastest WMA: 33x slower PSAR: 8,837x slower ATR: 13x slower Variable performance
Dependency Issues Frequent None None Rare Build-time only
Streaming Support No Yes (15.8x faster) No No No

⚡ Performance & Benchmarks

📊 Benchmark Methodology

Test Environment:

  • Data Size: 100,000 price points
  • Iterations: 3 runs per indicator per library
  • Hardware: Standard development machine
  • Libraries: ta-numba, ta-lib, ta, pandas, cython, NautilusTrader

Performance Analysis:

  • ta-numba delivers substantial performance improvements over pure Python libraries
  • TA-Lib maintains performance leadership in bulk processing
  • ta-numba provides unique advantages in streaming scenarios
  • Installation reliability varies significantly between libraries

📊 Comprehensive Benchmark Results (100K data points)

Complete Library Comparison:

Performance Comparison (Average Time per Run):
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Indicator    | ta           | ta-numba     | ta-lib       | pandas       | cython       | nautilus     | Speedup vs ta | Speedup vs talib | Speedup vs pandas | Speedup vs cython | Speedup vs nautilus
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SMA          | 0.001196s | 0.001082s | 0.000087s    | 0.000713s    | 0.000058s    | 0.105247s    | 1.11x       | 0.08x           | 0.66x            | 0.05x            | 97.29x
EMA          | 0.000577s | 0.000112s | 0.000332s    | 0.000493s    | 0.000168s    | 0.011398s    | 5.16x       | 2.97x           | 4.41x            | 1.50x            | 101.92x
RSI          | 0.002789s | 0.001355s | 0.000433s    | 0.002412s    | 0.001946s    | 0.062416s    | 2.06x       | 0.32x           | 1.78x            | 1.44x            | 46.06x
MACD         | 0.001635s | 0.000642s | 0.002456s    | 0.001860s    | 0.000666s    | 0.012047s    | 2.55x       | 3.83x           | 2.90x            | 1.04x            | 18.77x
ATR          | 0.205986s | 0.000672s | 0.002262s    | 0.008719s    | 0.001687s    | 0.018718s    | 306.60x       | 3.37x           | 12.98x           | 2.51x            | 27.86x
Bollinger Upper | 0.002052s | 0.001432s | 0.000341s    | 0.002129s    | 0.006004s    | 0.214716s    | 1.43x       | 0.24x           | 1.49x            | 4.19x            | 149.92x
OBV          | 0.000685s | 0.000066s | 0.000224s    | N/A          | 0.000275s    | 14.146200s   | 10.43x       | 3.42x           | N/A              | 4.19x            | 215376.26x
MFI          | 0.482099s | 0.002581s | 0.002374s    | 0.003096s    | 0.006168s    | 0.021110s    | 186.77x       | 0.92x           | 1.20x            | 2.39x            | 8.18x
WMA          | 2.456998s | 0.003013s | 0.000092s    | 0.126318s    | 0.002411s    | 0.339517s    | 815.56x       | 0.03x           | 41.93x           | 0.80x            | 112.70x
VWEMA        | 0.000908s | 0.000822s | 0.029710s    | 0.002095s    | 0.004002s    | 0.058675s    | 1.10x       | 36.13x          | 2.55x            | 4.87x            | 71.35x
ADX          | 0.407531s | 0.003533s | 0.000643s    | 0.012459s    | 0.009984s    | 0.002930s    | 115.34x       | 0.18x           | 3.53x            | 2.83x            | 0.83x
PSAR         | 4.123320s | 0.000467s | 0.000346s    | 0.449931s    | 0.001659s    | 0.007989s    | 8837.04x       | 0.74x           | 964.29x          | 3.56x            | 17.12x
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Summary Statistics:
Average speedup vs ta: 857.10x
Average speedup vs ta-lib: 4.35x
Average speedup vs pandas: 94.34x
Average speedup vs cython: 2.45x
Average speedup vs nautilus: 18002.35x
Identical results vs ta: 11/12
Identical results vs ta-lib: 4/12
Identical results vs cython: 5/12
Identical results vs nautilus: 3/12

📈 Performance Summary

Benchmark Results Analysis:

vs Pure Python Libraries:

  • ta library: 857x average speedup (range: 1.1x to 8,837x)
  • pandas: 94x average speedup (range: 0.66x to 964x)
  • Consistent performance advantage across most indicators

vs Compiled Libraries:

  • TA-Lib: 0.23x average performance (ta-numba is 4.3x slower on average)
  • cython: 2.5x average speedup (mixed results depending on indicator)
  • Performance varies significantly by indicator complexity

Streaming Performance:

  • 15.8x faster than bulk recalculation methods
  • Constant O(1) memory usage vs. O(n) growth
  • Microsecond-level latency for real-time applications

Library Selection Criteria:

  • Choose TA-Lib for: Maximum performance, stable environment, C compilation acceptable
  • Choose ta-numba for: Reliable deployment, streaming requirements, Python-only environments
  • Choose ta/pandas for: Simplicity, small datasets, existing pandas workflows

Real-Time Streaming Performance (per tick):

🚀 REAL-TIME STREAMING COMPARISON
============================================================
Simulating live market data feed with continuous price updates...

📊 Generating 100 warmup ticks...
🔥 Warming up JIT compilation...
📈 Initializing streaming indicators...

🎯 SIMULATING 10,000 LIVE MARKET TICKS...
------------------------------------------------------------
Progress:  10% | Avg Bulk:  0.039ms | Avg Streaming:  0.017ms | Speedup:   2.3x
Progress:  20% | Avg Bulk:  0.103ms | Avg Streaming:  0.018ms | Speedup:   5.8x
Progress:  30% | Avg Bulk:  0.174ms | Avg Streaming:  0.019ms | Speedup:   9.0x
Progress:  40% | Avg Bulk:  0.244ms | Avg Streaming:  0.021ms | Speedup:  11.6x
Progress:  50% | Avg Bulk:  0.313ms | Avg Streaming:  0.023ms | Speedup:  13.5x
Progress:  60% | Avg Bulk:  0.378ms | Avg Streaming:  0.023ms | Speedup:  16.2x
Progress:  70% | Avg Bulk:  0.447ms | Avg Streaming:  0.024ms | Speedup:  18.7x
Progress:  80% | Avg Bulk:  0.516ms | Avg Streaming:  0.024ms | Speedup:  21.7x
Progress:  90% | Avg Bulk:  0.589ms | Avg Streaming:  0.024ms | Speedup:  24.3x
Progress: 100% | Avg Bulk:  0.671ms | Avg Streaming:  0.026ms | Speedup:  26.1x

📊 FINAL RESULTS
============================================================
Total ticks processed: 10,000
Lookback window size: 10000

⏱️  TIMING STATISTICS (per tick):
Method                Mean     Median     95%ile     99%ile
-------------------------------------------------------
Bulk                0.347ms     0.346ms     0.673ms     0.699ms
Streaming           0.022ms     0.022ms     0.028ms     0.039ms

🚀 PERFORMANCE IMPROVEMENT:
Average speedup: 15.8x faster
Median speedup: 15.9x faster

💾 MEMORY USAGE COMPARISON:
Bulk approach: O(n) = 10000 * 8 bytes * 7 indicators = 546.9 KB
Streaming approach: O(1) = ~1 KB total (constant)
Memory efficiency: 547x less memory

⚡ LATENCY ANALYSIS:
Bulk 99th percentile: 0.699ms
Streaming 99th percentile: 0.039ms
For HFT (<1ms requirement): ✅ Bulk passes, ✅ Streaming passes