Trade-Matrix MVP
Institutional-Grade Cryptocurrency Algorithmic Trading Platform
"Combining traditional quantitative finance with modern ML/RL techniques, inspired by Renaissance Technologies and Two Sigma patterns."
Performance at a Glance
Key metrics demonstrating production-grade performance and institutional quality.
The Challenge
Traditional algorithmic trading systems lack the adaptability to handle volatile cryptocurrency markets and often fail to integrate multiple data modalities effectively.
The Solution
Trade-Matrix is a multi-modal trading system integrating OHLCV data, on-chain metrics, and sentiment analysis. It uses Transfer Learning for signal prediction and Reinforcement Learning (SAC) for dynamic position sizing, with a 4-tier fallback cascade ensuring robust operation.
The Impact
Production-deployed since November 24, 2025, achieving sub-5ms inference latency, 413+ monitoring metrics, and $0/month automation cost through GitHub Actions optimization.
System Architecture
Event-driven architecture with ML/RL intelligence layer and comprehensive monitoring.
4-Tier Position Sizing Cascade
Graceful degradation from full RL autonomy to emergency flat positions.
FULL_RL
100% RL position sizing
Confidence >= 0.50, IC >= 0.05
BLENDED
50% RL + 50% Kelly
Medium confidence/IC
PURE_KELLY
100% Kelly criterion
Low confidence or IC failure
EMERGENCY_FLAT
0% position (flat)
Circuit breaker OPEN
Key Capabilities
Institutional-grade features powering the trading system.
Hybrid Cloud Architecture
Optimized hybrid workflow: Local Docker for dev/training (MLflow+MinIO) and Azure K3S for inference. Achieves <$50/mo production cost by deprecating heavy resource containers in prod.
- Local: MLflow + MinIO + TimescaleDB for R&D
- Prod: GHCR-only deployment (Base + Model images)
- Storage: Free 500MB via GHCR (deprecated Droplet registry)
- Compute: VMSS for scalable inference resources
Code Highlight
4-tier fallback cascade ensuring robust position sizing from full RL to emergency flat.
1class MLRLIntegratedStrategy(Strategy):2 class="text-green-class="text-yellow-400">400">""class="text-green-class="text-yellow-400">400">"class="text-yellow-400">4-tier position sizing with graceful degradation."class="text-green-class="text-yellow-400">400">""3 4 def calculate_position_size(self, signal: TLSignal) -> float:5 class=class="text-green-class="text-yellow-400">400">"text-muted-foreground/class="text-yellow-400">60 italic"># Tier class="text-yellow-400">1: Full RL (high confidence + IC)6 if signal.confidence >= class="text-yellow-400">0.50 and signal.ic >= class="text-yellow-400">0.05:7 if self.circuit_breaker.state == class="text-green-class="text-yellow-400">400">"CLOSED":8 return self.rl_agent.get_position(signal)9 10 class=class="text-green-class="text-yellow-400">400">"text-muted-foreground/class="text-yellow-400">60 italic"># Tier class="text-yellow-400">2: Blended (class="text-yellow-400">50% RL + class="text-yellow-400">50% Kelly)11 if signal.confidence >= class="text-yellow-400">0.40:12 rl_pos = self.rl_agent.get_position(signal)13 kelly_pos = self.kelly_criterion(signal)14 return class="text-yellow-400">0.5 * rl_pos + class="text-yellow-400">0.5 * kelly_pos15 16 class=class="text-green-class="text-yellow-400">400">"text-muted-foreground/class="text-yellow-400">60 italic"># Tier class="text-yellow-400">3: Pure Kelly (low confidence/IC)17 if signal.confidence >= class="text-yellow-400">0.30:18 return self.kelly_criterion(signal)19 20 class=class="text-green-class="text-yellow-400">400">"text-muted-foreground/class="text-yellow-400">60 italic"># Tier class="text-yellow-400">4: Emergency flat (circuit breaker OPEN)21 return class="text-yellow-400">0.0 class=class="text-green-class="text-yellow-400">400">"text-muted-foreground/class="text-yellow-400">60 italic"># Flat positionBacktest Performance Report
Comprehensive Walk-Forward Validation Results (Jan-Dec 2025)
Interactive Backtest Analysis
3+ years of historical validation with ML/RL integration
Report includes equity curves, drawdown analysis, trade statistics, and walk-forward validation metrics across all instruments (BTCUSDT, ETHUSDT, SOLUSDT)
Technology Stack
Production-grade technologies powering institutional trading.
Python 3.12
100% type-hinted production code
LanguageNautilusTrader
Institutional-grade trading framework (342MB vendored)
TradingPostgreSQL + TimescaleDB
Time-series optimized database
DatabaseRedis 7.2
Event pub/sub and feature caching
CachingMLflow 2.10
ML experiment tracking and model registry
ML OpsMinIO
S3-compatible artifact storage
StorageK3S (Kubernetes)
Lightweight production orchestration
InfrastructurePrometheus + Grafana
71 base metrics with label expansion
MonitoringSoft Actor-Critic (SAC)
Entropy-maximized RL for position sizing
ML/RLBoruta
Feature selection (9-11 features per instrument)
MLMS-GARCH
4-state HMM for regime detection
QuantDocker Compose
Local development environment (12.6GB)
DevOpsDevelopment Journey
From research to production deployment.
Research Phase
Quantitative research across 5 domains with 1000+ pages of documentation
Architecture Design
Event-driven architecture with NautilusTrader framework selection
ML Pipeline
Transfer Learning and Boruta feature selection implementation
RL Integration
SAC algorithm with curriculum learning (45min vs 120min convergence)
Production Deploy
K3S hybrid architecture with $0/month automation
Weekly Updates
Automated 8-minute deployment pipeline operational
Regime-Adaptive Kelly Criterion
Position sizing adapts to market conditions detected by MS-GARCH.
Explore the Research Behind Trade-Matrix
Dive deeper into the quantitative research, ML methodologies, and system architecture.